Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport.

نویسندگان

  • A Taylor
  • E E Windhager
چکیده

Emerging evidence in a number of different epithelia suggests that changes in cytosolic calcium ion levels play a critical role in the regulation of transepithelial sodium transport. Maneuvers believed to raise cytosolic calcium ion activity lead to an inhibition of net sodium transport in toad urinary bladder, frog skin, and isolated perfused proximal renal tubules. Regulation of the level of ionized calcium in the cytosol of the epithelial cells appears to involve a process of coupled Na-Ca exchange across the basolateral plasma membrane, energized, at least in part, by the sodium gradient. It is suggested that changes in cytosolic calcium ion levels, secondary to changes in Na-Ca exchange, in turn dependent in part on the activity of the sodium pump, constitute a link in a negative feedback mechanism. Through such a feedback mechanism, the rate of entry of sodium into the cell across the apical surface may be kept in step with its rate of extrusion across the basolateral surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium: role of sodium-calcium exchange in the basolateral membrane

Sodium movement across the luminal membrane of the toad bladder is the rate-limiting step for active transepithelial transport. Recent studies suggest that changes in intracellular sodium regulate the Na permeability of the luminal border, either directly or indirectly via increases in cell calcium induced by the high intracellular sodium. To test these proposals, we measured Na movement across...

متن کامل

Functional role of sodium-calcium exchange in the regulation of renal vascular resistance.

Our study aimed to assess a possible functional role of the Na(+)/Ca(2+) exchanger in the regulation of renal vascular resistance (RVR). Therefore, we investigated the effects of an inhibition of the Na(+)/Ca(2+) exchanger either by lowering the extracellular sodium concentration ([Na(+)](e)) or, pharmacologically on RVR, by using isolated perfused rat kidneys. Graded decreases in [Na(+)](e) le...

متن کامل

Na+/Ca2+ exchange-mediated calcium entry in human lymphocytes.

Regulation of cytosolic Ca2+ and cytosolic Na+ is critical for lymphocyte cation homeostasis and function. To examine the influence of cytosolic Na+ on Ca2+ regulation in human peripheral blood lymphocytes, Ca2+ entry and cytosolic Ca2+ (measured with fura-2) were monitored in cells in which cytosolic Na+ was increased and/or the Na+ gradient was decreased by reduction of external Na+ concentra...

متن کامل

Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions.

The Na(+)/Ca(2+) exchanger's family of membrane transporters is widely distributed in cells and tissues of the animal kingdom and constitutes one of the most important mechanisms for extruding Ca(2+) from the cell. Two basic properties characterize them. 1) Their activity is not predicted by thermodynamic parameters of classical electrogenic countertransporters (dependence on ionic gradients an...

متن کامل

Transcellular Intestinal Calcium Transport in Freshwater and Seawater Fish and Its Dependence on Sodium/calcium Exchange

Transepithelial calcium uptake and transcellular calcium uptake mechanisms were compared in the proximal intestine of freshwaterand seawater-adapted tilapia, Oreochromis mossambicus. Stripped intestinal epithelium of seawater fish showed a higher paracellular permeability to calcium in vitro. Net transepithelial calcium uptake was 71% lower, reflecting a physiological response to the increased ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 236 6  شماره 

صفحات  -

تاریخ انتشار 1979